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Consequences of the Noncompactness of the
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The following four statements for indefinite metrics of Lorentz signature do not
possess an analogous statement in the definite Euclidean signature case: (1) All
curvature invariants of a gravitational wave vanish, in spite of the fact that it
represents a nonflat spacetime. (2) The eigennullframe components of the curvature
tensor (the Cartan ª scalarsº ) do not represent curvature scalars. (3) The Euclidean
topology in the Minkowski spacetime does not possess a basis composed of Lorentz-
invariant neighborhoods. (4) There are points in the de Sitter spacetime which
cannot be joined to each other by any geodesic. We show that these four statements
all follow from the noncompactness of the Lorentz group. We conclude that the
popular (and often useful) imaginary-coor dinate rotation from Euclidean to
Lorentzian signature (called Wick rotation) is not an isomorphism.

1. INTRODUCTION

A topological space X is compact if each open cover contains a finite

subcover. Equivalently one can say: X is compact if each sequence in X
possesses a converging subsequence. SO(n), the n-dimensional rotation group,

is compact, whereas SO(n 2 1, 1), the corresponding Lorentz group, fails

to be compact for n $ 2. Nevertheless, one can simply switch from the

Euclidean space En to the Minkowski spacetime Mn by replacing xn ® it.
It is the aim of this paper to show those points where the loss of

compactness connected with this replacement has nontrivial consequences.

2. GRAVITATIONAL WAVES

Let

ds2 5 2 du dv 2 a2(u)dw2 2 b2(u) dz2 (2.1)

with positive smooth functions a and b. It represents a gravitational wave if
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a ?
d2b

du2 1 b ?
d2 a

du2 5 0 (2.2)

For this result see, e.g., Schimming (1974). Metric (2.1) represents a

flat spacetime if both a and b are linear functions.

Let I be any curvature invariant of order k, i.e.,

I 5 I (gij, Rijlm, . . . , Rijlm; i1 ¼ ik)

is a scalar which depends continuously on all its arguments; the domain of
dependence is requested to contain the flat space, and I (gij, 0, ¼ 0) [ 0.

The following holds (Hawking and Ellis, 1973; Jordan et al., 1960). For

gravitational waves of type (2.1), I identically vanishes. Moreover, one can

prove that statement for all metrics (2.1) without requiring (2.2). The proof

by calculating the components of the curvature tensor is possible, but

quite technical.
A very short and geometrical proof goes as follows: Apply a Lorentz

boost in the u±v plane, i.e., u ® l ? u and v ® l 2 1 ? v for any l . 0. Then

a (u) is replaced by a ( l ? u) and b (u) by b ( l ? u). In the limit l ® 0, metric

(2.1) has a unique limit: constant functions a and b. It is the flat spacetime,

and so I 5 0 there. On the other hand, for all positive values l , I carries the
same value. By continuity this value equals zero. Q.E.D.

Why have all attempts failed to generalize the idea of this proof to the

positive-definite case? Because we need a sequence of Lorentz boosts which

does not possess any accumulative points within SO(3, 1). Such a sequence

does not exist in SO(4), because of compactness.

3. CARTAN SCALARS

A variant (Geroch et al., 1973) of the Newman±Penrose formalism

uses projections to an eigennullframe of the curvature tensor to classify

gravitational waves. The corresponding Cartan ª scalarsº have different boost

weights, and they represent curvature invariants for vanishing boost weight
only. The nonvanishing Cartan ª scalarsº for metric (2.1) have either nonvan-

ishing boost weight or a discontinuity at flat spacetime. So, the GHP formalism

(Geroch et al., 1973; cf. also Dautcourt et al., 1981; Ludwig and Edgar,

1996), does not yield a contradiction to the statement in Section 2.

Why do not there exist analogous ª scalarsº with different ª rotation

weightº in the Euclidean signature case? Analyzing the construction, one
can see that the boost weights appear because there is a nontrivial vector

space isomorphic to a closed subgroup of SO(3, 1). For SO(4), however, it

holds that every closed subgroup is compact; in order for it to be isomorphic

to a vector space, it is necessary that it be the trivial one-point space.
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More geometrically, this looks as follows (Schmidt, 1995). Let v P E4

be a vector and g P SO(4) such that g (v) - - v, then it holds that g (v) 5 v.
In Minkowski space-time M4, however, there exist vectors v P M4 and boosts
h P SO (3, 1) with h (v) - - v and h (v) Þ v.

4. LORENTZ-INVARIANT NEIGHBORHOODS

There is no doubt that the Euclidean topology t is the adequate topology
of the Euclidean space En. However, controversies appear if one asks whether

t is best suited for the Minkowski spacetime Mn.

The most radical path to answering this question can be found in Hawking

et al. (1976), Schmidt (1984), and Fullwood (1992); it leads to a topology

different from t which fails to be a normal one.

Here, we only want to find out in which sense one can say that t is
better adapted to En than to Mn. On a first view they appear on an equal

footing: Both SO(n) and SO(n 2 1, 1) represent subgroups of the homeomor-

phism group of t .

The difference appears as follows: for En, the usual e -spheres form a

neighborhood basis composed of SO(n)-invariant open sets. Moreover, each
of these neighborhoods has a compact closure. Let U be any open neighbor-

hood with compact closure around the origin in En. For every g P SO(n),

U (g) is the set U after rotation by g. Of course, U (g) is also an open

neighborhood with compact closure around the origin in En. Let us define

V 5 ø {U (g) | g P SO(n)}

and

W 5 ù {U (g) | g P SO (n)}

Both V and W represent SO(n)-invariant neighborhood s of the origin

with compact closure. Analyzing the proofs, one can see that, ª V is a neighbor-
hood of the originº and ª W has compact closureº are trivial statements,

whereas ª W is a neighborhood of the originº and ª V has compact closureº

essentially need the compactness of SO(n). For Mn, however, both of these

latter properties fail. In more detail we have:

1. No point of Mn possesses a neighborhood basis composed of SO(n
2 1, 1)-invariant open sets.

2. No SO(n 2 1, 1)-invariant neighborhood has a compact closure.

3. Let U be any open neighborhood with compact closure around the

origin in Mn. For every g P SO(n 2 1, 1), U (g) is also an open neighborhood

with compact closure around the origin in Mn. However, neither
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V 5 ø {U (g) | g P SO(n 2 1, 1)}

nor

W 5 ù {(U (g) | g P SO(n 2 1, 1)}

represents a neighborhoods of the origin with compact closure.

5. GEODESICS

Now we analyze the following statement (see, e.g., Hawking and Ellis,

1973; Schmidt, 1993): In spite of the fact that the de Sitter spacetime is

connected and geodetically complete, there are points in it which cannot be

joined to each other by any geodesic.

Let us recall that for Riemannian spaces, if the space is connected and

geodetically complete, then each pair of points can be connected by a geodesic.
The proof for Riemannian spaces Vn goes as follows: Take one of its

points as x and define Mx , Vn to be that set of points which can be reached

from x by a geodesic. One can show that Mx is nonempty, open, and closed.

This implies Mx 5 Vn.

But where does the corresponding proof fail when we try to generalize

it to the de Sitter spacetime?
Let us recall that a geodetic e -ball is the exponentiated form of a rotation-

invariant neighborhood of the corresponding tangent space. For Riemannian

spaces these geodetic e -balls form a neighborhood basisÐ and just this is

needed in the proof.

But where does it fail in detail? Mx ª non-empty, open, and closedº would
again imply Mx 5 Vn. Mx ª nonemptyº is trivially satisfied by x P Mx. So

we can fail by proving ª openº or by proving ª closed.º It turns out (Schmidt,

1993) that Mx is neither open nor closed in general, and both properties fail

by the lack of a neighborhood basis consisting of geodetic e -balls.

So, if compared with Section 4, we can see that it is again the non-

compactness of the Lorentz group which produces the peculiarities.

6. CONCLUSION

A finite set in set theory, a bounded set in geometry, and a compact set

in topology: these are corresponding fundamental notions.

What have we learned from the above analysis on compactness? Let us
concentrate on the first point (Section 2): the fact that nonisometric spacetimes

exist which cannot be distinguished by curvature invariants is neither con-

nected with the fact that one of them is flat nor with the vanishing of the

curvature invariants, but, as we have seen, with the appearance of a Lorentz
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boost which has a limit not belonging to SO(3, 1), but producing a regular

metric there. So we have found the very recipe to construct several classes

of such spacetimes. Let us present one of them (Schmidt, 1995):
For a positive C ` -function a (u) let

ds2 5
1

z2 [2 du dv 2 a 2(u) dy2 2 dz2]

In the region z . 0, ds2 represents the anti-de Sitter spacetime if and only

if a (u) is linear in u. Now, let d2a/du2 , 0 and

f : 5
1

! k # 1 2 1

a

d2a

du2 2
1/2

du

Then

N f 5 f , i f ,i 5 0 and Rij 2
R

2
gij 5 L gij 1 k Tij

with L 5 2 3 and Tij 5 f ,i f ,j. So (ds2, f ) represents a solution of Einstein’ s

equation with negative cosmological term L and a minimally coupled mass-

less scalar field f . Let I be a curvature invariant of order k. Then for the

metric ds2, I does not depend on the function a (u). So I takes the same value

both for linear and nonlinear functions a (u). This seems to be the first example
that nonisometric spacetimes with nonvanishing curvature scalar cannot be

distinguished by curvature invariants. And having the recipe, the construction

of other classes is straightforwardly done.

The fact that the representation theory of the rotation groups SO(n) and

the Lorentz groups SO(n 2 1, 1) is quite different is so well known that we

did not repeat it hereÐ we only want to mention that it is the compactness
of the first one which produces the difference.
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